Corrigé exercice 3 - Réfraction air/eau

Réponses	Commentaires
1-a- surface de séparation	1-a- Pour déterminer les angles d'incidence i et de réfraction r, il faut identifier la surface de séparation, la normale et faire apparaitre les angles sur le schéma. On peut ensuite mesurer les angles i et r.
On trouve $i = 54^{\circ}$ et $r = 38^{\circ}$	
1-b-D'après la deuxième loi de Descartes : $n_i \; x \; \text{sin i} = n_r \; x \; \text{sin r}$ Deuxième loi de Descartes appliquée à notre	1-b- La grandeur recherchée est l'indice de réfraction de l'eau. La seule relation connue permettant d'accéder à cette grandeur est la seconde loi de Descartes. Nous allons donc appliquer cette loi. $n_i \times \sin i = n_r \times \sin r$
problème. $n_{air} \ x \ sin \ i = n_{eau} \ x \ sin \ r$ Nous recherchons n_{eau} :	On peut identifier chacun des milieux pour préciser l'expression de la deuxième loi, et éviter les confusions. (ici, le rayon incident est dans l'air, et le rayon refracté dans l'eau)
$n_{eau} = \frac{n_{air} \times sini}{sinr}$ A.N.:	Il faut ensuite isoler la grandeur recherchée, l'indice de réfraction de l'eau n _{eau} .
$n_{air} = 1.0$ $i = 54^{\circ}$ $r = 38^{\circ}$ $n_{eau} = \frac{1.0 \times \sin 54}{\sin 38}$	on peut ensuite réaliser l'application numérique. (Faire attention au réglage de la calculatrice, angles en degrés)
<u>n_{eau} = 1,3</u>	
2-a- Deuxième loi de Descartes : $n_{air} \ x \ sin \ i = n_{eau} \ x \ sin \ r$ Nous recherchons r : $sinr = \frac{n_{air}}{n_{eau}} \times sin \ i$	On nous donne dans l'énoncé la valeur de l'angle d'incidence. On a déterminé à la question précédente l'indice de l'eau et on nous demande de calculer un angle de réfraction. Pour cette question, il va encore falloir utiliser la seconde lio de Descartes.
A.N.: n _{air} = 1,0 n _{eau} = 1, 3 i = 85°	On remplace les valeur dans l'expression litterale.
$sinr = \frac{1}{1,3} \times sin85$	Attention, le résultat du calcul donne le sinus de l'angle de réfraction.
(sin r = 0,766) r = 50 °	Il faut donc utiliser la touche " sin-1 " de la calculatrice.